LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interactive goal programming algorithm with Taylor series and interval type 2 fuzzy numbers

Photo by stayandroam from unsplash

This paper presents an interactive fuzzy goal programming (FGP) approach for solving Multiobjective Nonlinear Programming Problems (MONLPP) with interval type 2 fuzzy numbers (IT2 FNs). The cost and time of… Click to show full abstract

This paper presents an interactive fuzzy goal programming (FGP) approach for solving Multiobjective Nonlinear Programming Problems (MONLPP) with interval type 2 fuzzy numbers (IT2 FNs). The cost and time of the objective functions, and the requirements of each kind of resources are taken to be trapezoidal IT2 FNs. Here, the considered fuzzy problem is first transformed into an equivalent crisp MONLPP, and then the MONLPP is converted into an equivalent multiobjective linear programming problem (MOLPP). By using an algorithm based on Taylor series, this problem is also reduced into a single objective linear programming problem (LPP) which can be easily solved by Maple 2017 optimization toolbox. Finally, the proposed solution procedure is illustrated by a numerical example.

Keywords: type fuzzy; goal programming; taylor series; fuzzy numbers; fuzzy; interval type

Journal Title: International Journal of Machine Learning and Cybernetics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.