LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

α2,6-Sialylation promotes immune escape in hepatocarcinoma cells by regulating T cell functions and CD147/MMP signaling

Photo from wikipedia

Altered glycosylation is a common feature of cancer cells and plays an important role in tumor progression. β-Galactoside α2-6-sialyltransferase 1 (ST6Gal-I) is the critical sialyltransferase responsible for the addition of… Click to show full abstract

Altered glycosylation is a common feature of cancer cells and plays an important role in tumor progression. β-Galactoside α2-6-sialyltransferase 1 (ST6Gal-I) is the critical sialyltransferase responsible for the addition of α2-6-sialic acid to the terminal N-glycans on the cell surface. However, the functions and mechanism of ST6Gal-I in tumor immune escape remain poorly understood. Here, we found that ST6Gal-I overexpression promoted hepatocarcinoma cell proliferation, migration, and immune escape by increasing the levels of CD147, MMP9, MMP2, and MMP7. When CD8+ T cells were co-cultured with cell lines expressing different levels of ST6Gal-I, we found that ST6Gal-I upregulation inhibited the T cell proliferation and increased the secretion of IL-10 and TGF-β1, while secretion of IFN-γ and TNF-α was diminished. In a syngeneic tumor transplant model, ST6Gal-I upregulated Hca-P. In addition, Hepa1-6 cells formed significantly larger tumors and suppressed intratumoral penetration by CD8+ T cells. In combination, these results suggest that ST6Gal-I promotes the immune escape of hepatocarcinoma cells in the tumor microenvironment and highlight the importance of assessing ST6Gal-I status for immunotherapies.

Keywords: escape hepatocarcinoma; escape; immune escape; promotes immune; cell

Journal Title: Journal of Physiology and Biochemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.