LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

GCN5L1 controls renal lipotoxicity through regulating acetylation of fatty acid oxidation enzymes

Photo from wikipedia

Dyslipidemia is a common risk factor of chronic kidney disease (CKD). Current notion suggests that insufficient intracellular fatty acid oxidation (FAO) and subsequently enhanced fatty acid esterification within renal resident… Click to show full abstract

Dyslipidemia is a common risk factor of chronic kidney disease (CKD). Current notion suggests that insufficient intracellular fatty acid oxidation (FAO) and subsequently enhanced fatty acid esterification within renal resident cells, a process termed as renal lipotoxicity, is the key pathogenic event responsible for dyslipidemia-induced kidney injury. However, the detailed mechanism is not fully elucidated. Recently, accumulating data indicated that acetylation modification is an important regulating manner for both mitochondrial function and energy metabolism, while whether acetylation modification is involved in renal lipotoxicity is of little known. In the present study, the expression level of global lysine acetylation was detected by immunohistochemistry in high-fat diet mice and western blot in palmitic acid (PA) stimulated HK-2 cells. The acetylation levels of long-chain acyl-CoA dehydrogenases (LCAD) and β-hydroxyacyl-CoA dehydrogenase (β-HAD) were measured by immunoprecipitation. And a multifunction microplate reader was applied to detect FAO rate, triglyceride and acyl-CoA contents, and the enzyme activities, with cellular lipid accumulation identified by Oil Red O staining. We evidenced the acetylation levels of LCAD and β-HAD that were enhanced, which led to decreased enzymatic activities and impaired FAO rate. Furthermore, renal protein hyperacetylation induced by lipid overload was associated with increased expression of GCN5L1. And the silence of GCN5L1 in tubular epithelial cells resulted in deacetylation and activation of LCAD and β-HAD. Finally, excess lipids induced lipotoxicity and epithelial-mesenchymal transition (EMT) were ameliorated by GCN5L1 suppression, suggesting GCN5L1-mediated mitochondrial LCAD and β-HAD acetylation might be a key pathogenic event underlying excess lipids induced FAO impairment.

Keywords: acetylation; lipotoxicity; fatty acid; renal lipotoxicity; acid oxidation

Journal Title: Journal of Physiology and Biochemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.