LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impacts of oceanographic factors on interannual variability of the winter-spring cohort of neon flying squid abundance in the Northwest Pacific Ocean

Photo by raddfilms from unsplash

The neon flying squid Ommastrephes bartramii is an economically important species in the Northwest Pacific Ocean. The life cycle of O. bartramii is highly susceptible to climatic and oceanic factors.… Click to show full abstract

The neon flying squid Ommastrephes bartramii is an economically important species in the Northwest Pacific Ocean. The life cycle of O. bartramii is highly susceptible to climatic and oceanic factors. In this study, we have examined the impacts of climate variability and local biophysical environments on the interannual variability of the abundance of the western winter-spring cohort of O. bartramii over the period of 1995–2011. The results showed that the squid had experienced alternant positive and negative Pacific Decadal Oscillation (PDO) over the past 17 years during which five El Niño and eight La Niña events occurred. The catch per unit effort (CPUE) was positively correlated with the PDO index (PDOI) at a one-year time lag. An abnormally warm temperature during the La Niña years over the positive PDO phase provided favorable oceanographic conditions for the habitats of O. bartramii, whereas a lower temperature on the fishing ground during the El Niño years over the negative PDO phase generally corresponded to a low CPUE. The same correlation was also found between CPUE and Chl a concentration anomaly. A possible explanation was proposed that the CPUE was likely related to the climateinduced variability of the large-scale circulation in the Northwest Pacific Ocean: high squid abundance often occurred in a year with a significant northward meander of the Kuroshio Current. The Kuroshio Current advected the warmer and food-rich waters into the fishing ground, and multiple meso-scale eddies arising from current instability enhanced the food retention on the fishing ground, all of which were favorable for the life stage development of the western squid stocks. Our results help better understand the potential process that the climatic and oceanographic factors affect the abundance of the winter-spring cohort of O. bartramii in the Northwest Pacific Ocean.

Keywords: spring cohort; pacific ocean; variability; northwest pacific; abundance; winter spring

Journal Title: Acta Oceanologica Sinica
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.