The purpose is to study the accuracy of ocean wave parameters retrieved from C-band VV-polarization Sentinel-1 Synthetic Aperture Radar (SAR) images, including both significant wave height (SWH) and mean wave… Click to show full abstract
The purpose is to study the accuracy of ocean wave parameters retrieved from C-band VV-polarization Sentinel-1 Synthetic Aperture Radar (SAR) images, including both significant wave height (SWH) and mean wave period (MWP), which are both calculated from a SAR-derived wave spectrum. The wind direction from in situ buoys is used and then the wind speed is retrieved by using a new C-band geophysical model function (GMF) model, denoted as C-SARMOD. Continuously, an algorithm parameterized first-guess spectra method (PFSM) is employed to retrieve the SWH and the MWP by using the SAR-derived wind speed. Forty–five VV-polarization Sentinel-1 SAR images are collected, which cover the in situ buoys around US coastal waters. A total of 52 subscenes are selected from those images. The retrieval results are compared with the measurements from in situ buoys. The comparison performs good for a wind retrieval, showing a 1.6 m/s standard deviation (STD) of the wind speed, while a 0.54 m STD of the SWH and a 2.14 s STD of the MWP are exhibited with an acceptable error. Additional 50 images taken in China’s seas were also implemented by using the algorithm PFSM, showing a 0.67 m STD of the SWH and a 2.21 s STD of the MWP compared with European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis grids wave data. The results indicate that the algorithm PFSM works for the wave retrieval from VV-polarization Sentinel-1 SAR image through SAR-derived wind speed by using the new GMF C-SARMOD.
               
Click one of the above tabs to view related content.