LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The research on boundary layer evolution characteristics of Typhoon Usagi based on observations by wind profilers

Photo by henrylim from unsplash

Vertically exploring the characteristics of the typhoon boundary layer (TBL) plays an important role in recognizing typhoon structure. The boundary layer radial direction and tangential wind characteristics of Typhoon Usagi… Click to show full abstract

Vertically exploring the characteristics of the typhoon boundary layer (TBL) plays an important role in recognizing typhoon structure. The boundary layer radial direction and tangential wind characteristics of Typhoon Usagi based on the observational data of three boundary layer wind profiler stations along the route of Typhoon Usagi (No. 1319) and by combining with sounding data. The results show that: (1) maximum tangential wind appears in the vicinity of the eye area of Usagi, and it basically maintains a height of around 1 800 m when Usagi keeps a strong typhoon level, with the rapidly decreasing strength of Usagi after it lands, the speed of the maximum tangential wind and its vertical range both decrease; (2) the height of the maximum tangential wind is close to that of the inflow layer top of the typhoon, and is greater than that of the boundary layer estimated on the basis of Richardson number or potential temperature gradient, while the height of mixed layer judged on the basis of the signal-to-noise ratio (SNR) or its gradient is usually low; (3) the the boundary layer height can reach higher than 2 100 m before Usagi lands. When the typhoon level or above is achieved, the boundary layer height observed by various stations does not change much, basically staying at between 1 200 and 1 600 m. With the decreasing strength of Usagi after its landfall, the boundary layer height rapidly drops.

Keywords: typhoon usagi; characteristics typhoon; layer; boundary layer; tangential wind

Journal Title: Acta Oceanologica Sinica
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.