LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Geochemistry and age of seamounts in the West Pacific: mantle processes and petrogenetic implications

Photo from wikipedia

Research on seamounts provides some of the best constraints for understanding intraplate volcanism, and samples from seamounts reveal crucial evidence about the geochemical makeup of the oceanic mantle. There are… Click to show full abstract

Research on seamounts provides some of the best constraints for understanding intraplate volcanism, and samples from seamounts reveal crucial evidence about the geochemical makeup of the oceanic mantle. There are still many seamounts in the West Pacific Seamount Province (WPSP) that have not been studied, meaning their ages and geochemistry remain unknown. A better understanding of these seamount trails and their evolutionary history, investigated with age and geochemistry data, will enable better understanding of the geological processes operating underneath the Pacific Ocean Plate. Here, new 40Ar/39Ar ages and trace element and Sr-Nd-Pb isotopic data for seven basalt rocks from four seamounts in the WPSP are provided. Chemically, these rocks are all Oceanic Island Alkali basalt (OIA type); analysis of olivine phenocrysts shows that the magmas experienced strong olivine fractionation and changed from olivine + plagioclase to olivine + plagioclase + clinopyroxene cotectic during their evolution. Rare earth element (REE) patterns and a spider diagram of the samples in this study show OIB (Ocean Island Basalt) like behavior. The range of 87Sr/86Sr values is from 0.704 60 to 0.706 24, the range of 206Pb/204Pb values is from 18.241 to 18.599, and the range of 143Nd/144Nd values is from 0.512 646 to 0.512 826; together, these values indicate magma sources ranging from EMI to EMII. Finally, new 40Ar/39Ar age data show that these seamounts formed at ~97 and ~106 Ma, indicating that some may have undergone the same formation processes as seamounts in the eastern part of the Magellan Seamount Trail, but other seamounts likely have different origins.

Keywords: west pacific; geochemistry age; seamounts west; age; geochemistry; age seamounts

Journal Title: Acta Oceanologica Sinica
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.