LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A model for the transportation and distribution of jellyfish Rhopilema esculentum for stock enhancement in the Liaodong Bay, China

Photo by joelfilip from unsplash

A numerical model for jellyfish Rhopilema esculentum stock enhancement is developed for the first time. The model is based on an operational ocean circulation-surface wave coupled forecasting system for the… Click to show full abstract

A numerical model for jellyfish Rhopilema esculentum stock enhancement is developed for the first time. The model is based on an operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas and uses a Lagrangian particle-tracking scheme to track the trajectories of released jellyfish. The Jellyfish are modeled as particles with diel vertical migration and are passively drifted by the current and dispersion due to the sub-grid processes. A comparison between the simulation and survey results demonstrate that the model can capture the primary distribution patterns of the released jellyfish. The model results show that the ocean current and indirect wind impact are the main drivers controlling the jellyfish transport. A connectivity matrix between the release sites and fishing grounds indicates the top of the bay is better than the eastern and western coasts for jellyfish fishing. The matrix also shows that only 45% and 27% of the jellyfish released from Wafangdian (WFD) can enter the fishing ground in 2008 and 2010; thus, the site near WFD is not an advisable location for jellyfish release. A Lagrangian probability density function based on a nine-year tracing experiment validates the results and further provides a “climatology” distribution of the released jellyfish. Several experiments are conducted to examine the sensitivity of the model to random walk schemes and to release conditions. The model requires a random walk but is insensitive to the random walk scheme. The experiments with different habitat depths show that if the jellyfish are fixed on the bottom of the water, most of them will be transported to the center, or even out of the bay, by the bottom circulation.

Keywords: model; jellyfish rhopilema; esculentum stock; rhopilema esculentum; jellyfish; distribution

Journal Title: Acta Oceanologica Sinica
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.