LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modal structure and propagation of internal tides in the northeastern South China Sea

Photo by mbrunacr from unsplash

The evolution of energy, energy flux and modal structure of the internal tides (ITs) in the northeastern South China Sea is examined using the measurements at two moorings along a… Click to show full abstract

The evolution of energy, energy flux and modal structure of the internal tides (ITs) in the northeastern South China Sea is examined using the measurements at two moorings along a cross-slope section from the deep continental slope to the shallow continental shelf. The energy of both diurnal and semidiurnal ITs clearly shows a ~14-day spring-neap cycle, but their phases lag that of barotropic tides, indicating that ITs are not generated on the continental slope. Observations of internal tidal energy flux suggest that they may be generated at the Luzon Strait and propagate west-northwest to the continental slope in the northwestern SCS. Because the continental slope is critical-supercritical with respect to diurnal ITs, about 4.6 kJ/m2 of the incident energy and 8.7 kW/m of energy flux of diurnal ITs are reduced from the continental slope to the continental shelf. In contrast, the semidiurnal internal tides enter the shelf because of the sub-critical topography with respect to semidiurnal ITs. From the continental slope to the shelf, the vertical structure of diurnal ITs shows significant variation, with dominant Mode 1 on the deep slope and dominant higher modes on the shelf. On the contrary, the vertical structure of the semidiurnal ITs is stable, with dominant Mode 1.

Keywords: slope; internal tides; energy; continental slope; modal structure

Journal Title: Acta Oceanologica Sinica
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.