This paper overviews research progress in observation, theoretical analysis and numerical modeling of submesoscale dynamic processes in the South China Sea (SCS) particularly during recent five years. The submesoscale processes… Click to show full abstract
This paper overviews research progress in observation, theoretical analysis and numerical modeling of submesoscale dynamic processes in the South China Sea (SCS) particularly during recent five years. The submesoscale processes are defined according to both spatial and dynamic scales, and divided into four subcategories as submesoscale waves, submesoscale vortexes, submesoscale shelf processes, and submesoscale turbulence. The major new findings are as follows. (1) Systematic mooring observations provide new insights into the solitary waves (ISWs) and the typhoon-forced near-inertial waves (NIWs), of which a new type of ISWs with period of 23 h was observed in the northern SCS (NSCS), and the influences of background vorticity, summer monsoon onset, and deep meridional overturning circulation on the NIWs, as well as nonlinear wave-wave interaction between the NIWs and internal tides, are better understood. On the other hand, satellite altimeter sea surface height data are used to reveal the internal tide radiation patterns and provide solid evidence for that the ISWs in the northeastern SCS originate from the Luzon Strait. (2) Submesoscale offshore jets and associated vortex trains off the Vietnam coast in the western boundary of the SCS were observed from satellite chlorophyll concentration images. Spiral trains with the horizontal scale of 15–30 km and the spacing of 50–80 km were identified.(3) 3-D vertical circulation in the upwelling region east of Hainan Island was theoretically analyzed. The results show that distribution patterns of all the dynamic terms are featured by wave-like structures with horizontal wavelength scale of 20–40 km. (4) Numerical models have been used for the research of submesoscale turbulence. Submesoscale vertical pump of an anticyclonic eddy and the spatiotemporal features of submesoscale processes in the northeastern SCS are well modeled.
               
Click one of the above tabs to view related content.