Small water bodies including drainage ditches can be hotspots for methane (CH4) emissions from peatlands. We assessed the CH4 emissions of a drained and a rewetted temperate fen including emissions… Click to show full abstract
Small water bodies including drainage ditches can be hotspots for methane (CH4) emissions from peatlands. We assessed the CH4 emissions of a drained and a rewetted temperate fen including emissions of managed and unmanaged drainage ditches over the course of 2.5 years, covering three vegetation periods. Ditch CH4 emissions in the rewetted fen were significantly higher than in the drained fen. In the rewetted fen ditches contributed up to 91% of the annual CH4 budget, despite covering only 1.5% of the area. In the drained fen CH4 emissions were solely made up of ditch emissions. When including CH4 uptake by the peat soil, the CH4 balance of the drained fen was neutral. Dissolved organic carbon concentrations likely had an enhancing effect on CH4 emissions while nitrate and sulfate in the ditch water seem to have had an inhibitory effect. Air and water temperature controlled seasonal variability of ebullitive as well as diffusive CH4 emissions. Ebullition contributed less than 10% to the overall CH4 budget in the ditches. Drainage ditches represent a hotspot of CH4 emissions and need therefore be taken into account when assessing the success of rewetting projects of peatlands.
               
Click one of the above tabs to view related content.