LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Formulation, characterization and antimicrobial properties of black cumin essential oil nanoemulsions stabilized by OSA starch

Photo from archive.org

Preparation of oil-in-water nanoemulsions has emerged as a subject of interest for the encapsulation of lipophilic functional ingredients to increase their stability and activity. In this study, black cumin essential… Click to show full abstract

Preparation of oil-in-water nanoemulsions has emerged as a subject of interest for the encapsulation of lipophilic functional ingredients to increase their stability and activity. In this study, black cumin essential oil nanoemulsions (BCO-NE) using different ratios of essential oil with canola and flax seed oils (ripening inhibitors) were formulated and stabilized with octenyl succinic anhydride (OSA) modified waxy maize starch. The nanoemulsions exhibited monomodal size distributions with mean droplet diameter below 200 nm and zeta potential above −30, indicating a strong electrostatic repulsion between the dispersed oil droplets. Further, during storage (4 weeks at 25 °C ± 2) emulsions showed shear thinning phenomena and stability towards coalescence. Antimicrobial properties of nanoemulsions were determined by minimum inhibitory concentration and time-kill method against two Gram-positive bacterial (GPB) strains (Bacillus cereus and Listeria monocytogenes). Negatively charged BCO-NE showed prolonged bactericidal activities as compared to pure BCO due to better stability, controlled release and self-assembly with GPB cell membrane followed by destruction of cellular constituents. Our results suggest the application of BCO-NE may be exploited in aqueous food systems for extending the shelf life and other functional properties.

Keywords: essential oil; oil nanoemulsions; oil; cumin essential; black cumin; antimicrobial properties

Journal Title: Journal of Food Science and Technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.