The applicability of near-infrared (NIR) and mid-infrared (MIR) spectroscopy combined with chemometrics was explored in this study to develop rapid, low-cost and non-destructive spectroscopic methods for classification and quantification of… Click to show full abstract
The applicability of near-infrared (NIR) and mid-infrared (MIR) spectroscopy combined with chemometrics was explored in this study to develop rapid, low-cost and non-destructive spectroscopic methods for classification and quantification of aflatoxins in brown rice. A total of 132 brown rice samples within the aflatoxin concentration range of 0–2435.8 μg/kg were prepared by artificially inoculated with A. flavus and A. parasiticus strains of fungus. For the classification of samples at varying levels of aflatoxin B1, the linear discriminant analysis model obtained correct classification rate of 96.9 and 90.6% for NIR and MIR spectroscopy, respectively. For the simultaneous determination of aflatoxins B1, B2, G1, G2 and the total aflatoxins, partial least squares regression also showed good predictive accuracy for both NIR (rv = 0.936–0.973, RPD = 2.5–4.0) and MIR spectroscopy (rv = 0.922–0.970, RPD = 2.5–4.0). The overall results indicated that the two spectroscopic techniques offered the feasibility to be used as alternative tools for rapid detection of various aflatoxin contaminations in grain.
               
Click one of the above tabs to view related content.