LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pervaporation-based membrane processes for the production of non-alcoholic beverages

Photo from wikipedia

Nowadays, the interest in manufacturing non-alcoholic or low alcoholic content beverages from alcoholic beverages is a current challenge for food technologists; this is due to the fact that huge consumption… Click to show full abstract

Nowadays, the interest in manufacturing non-alcoholic or low alcoholic content beverages from alcoholic beverages is a current challenge for food technologists; this is due to the fact that huge consumption of alcoholic beverages may produce health problems in the costumers. In principle, the post-fermentation ethanol removal from alcoholic beverages is carried out by means of evaporation or distillation. Such current dealcoholization methodologies are efficiently removing the ethanol, however, some organoleptic compounds can also be lost during the process. This makes the dealcoholization process highly sensitive in order to preserve the quality properties of the beverages. Thereby, membrane-based technologies, which use perm-selective barriers for the separation, have been highly promoted for such purpose. Pervaporation (PV) technology is indeed one of these technologies aimed for ethanol removal. Herein, the goal of this review is to provide a compelling overview of the most relevant findings for the production of non-alcoholic beverages (such as beer and wine) by means of PV. Particular attention is paid to experimental results which provide compelling feedback about the accurate ethanol removal and minimal changes on physicochemical properties of the beverages. Moreover, some theoretical basis of such technology, as well as key criteria for a more efficient dealcoholization, are also given.

Keywords: ethanol removal; non alcoholic; pervaporation; alcoholic beverages; production non

Journal Title: Journal of Food Science and Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.