LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of mineral phosphate solubilizing and plant growth promoting bacteria from termite soil of arid region

Photo from wikipedia

Five highly efficient phosphate solubilizing bacteria, viz., Pantoea sp. A3, Pantoea sp. A34, Kosakonia sp. A37, Kosakonia sp. B7 and Bacillus sp. AH9 were isolated from termitorial soils of Sanjivani… Click to show full abstract

Five highly efficient phosphate solubilizing bacteria, viz., Pantoea sp. A3, Pantoea sp. A34, Kosakonia sp. A37, Kosakonia sp. B7 and Bacillus sp. AH9 were isolated from termitorial soils of Sanjivani island of southern Maharashtra, India. These isolates were characterized and explored for phosphate solubilization and plant growth promotion. Among these, Bacillus sp. AH9 showed highest phosphate solubilization index (3.5) and solubilization efficiency (250%) on Pikovskaya agar. Interestingly, Pantoea sp. A34 displayed maximum mineral phosphate solubilization (1072.35 mg/L) in liquid medium and during this period the pH dropped to 3.13. All five isolates had highest P solubilization at 48 h after inoculation. During mineral phosphate solubilization, both gluconic acid and 2-keto gluconic acid were produced by Kosakonia and Bacillus isolates, while only 2-keto gluconic acid was detected in Pantoea isolates. Highest organic acid (39.07 ± 0.04 g/L) production was envisaged in Bacillus sp. AH9, while Pantoea sp. A34 produced the least amount (13.00 ± 0.01 g/L) of organic acid. Seed bacterization with Pantoea sp. A3 and Kosakonia sp. A37 resulted in ~ 37% and ~ 53% increase in root length of tomato seedlings, respectively, while Pantoea sp. A34 and Kosakonia sp. B7 had deleterious effects on root length as well as overall growth of the seedlings. To our knowledge, this is the first report of plant growth promoting potential of microorganisms isolated from termitorial soil of Sanjivani island, which is a drought-prone area. Therefore, such efficient growth promoting P solubilizers can offer an effective solution for sustainable agriculture in arid, dryland farming and drought-prone regions.

Keywords: plant growth; growth promoting; solubilization; growth; mineral phosphate; phosphate

Journal Title: 3 Biotech
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.