Antifreeze proteins (AFPs) confer the ability to survive at subzero temperatures and are found in many different organisms, including fish, plants, and insects. They prevent the formation of ice crystals… Click to show full abstract
Antifreeze proteins (AFPs) confer the ability to survive at subzero temperatures and are found in many different organisms, including fish, plants, and insects. They prevent the formation of ice crystals by non-colligative adsorption to the ice surface and are essential for the survival of organisms in cold environments. These proteins are also widely used for cryopreservation, food technology, and metabolic genetic engineering over a range of sources and recipient cell types. This review summarizes successful applications of AFPs in the cryopreservation of animals, insects, and plants, and discusses challenges encountered in cryopreservation. Applications in metabolic genetic engineering are also described, specifically with the overexpression of AFP genes derived from different organisms to provide freeze protection to sensitive crops seasonally exposed to subzero temperatures. This review will provide information about potential applications of AFPs in the cryopreservation of animals and plants as well as in plant metabolic genetic engineering in hopes of furthering the development of cold-tolerant organisms.
               
Click one of the above tabs to view related content.