LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cyanobacteria as biochemical energy source for the synthesis of inorganic nanoparticles, mechanism and potential applications: a review

Photo by mitchel3uo from unsplash

Green synthesis of nanoparticles (NPs) has gained great concern among researchers due to their unique properties, excellent applications and efficient route of synthesis. From the last decades, the number biologicals… Click to show full abstract

Green synthesis of nanoparticles (NPs) has gained great concern among researchers due to their unique properties, excellent applications and efficient route of synthesis. From the last decades, the number biologicals such as plants, fungus, bacteria, yeast, algae, and cyanobacteria and their products are using by various researchers for the synthesis of different NPs. However, the pillar of green chemistry keeps touching new heights to improve the performance. This review paper unveils almost recent cyanobacteria-assisted greener NP synthesis technique, characterization and application. The enormous potency of cyanobacteria in NP synthesis (silver, gold, copper, zinc, palladium, titanium, cadmium sulfide, and selenium) and significance of reducing enzymes were summarized. The extracellular and intracellular entity such as metabolites, enzyme, protein, pigments in cyanobacteria play a significant role in the conversion of metal ions to metal NPs with unique properties discussed briefly. The green synthesis of nanomaterials is valuable because of their cost-effective, nontoxic and eco-friendly prospects as well as the potential application metal NPs such as antibacterial, antifungal, anticancerous, catalytic, drug delivery, bioimaging, nanopesticide, nanofertilizer, sensing properties, etc. Therefore, in the present review, we have systematically discussed the mechanisms of synthesis and applications of cyanobacteria-assisted green synthesis of NPs.

Keywords: source synthesis; biochemical energy; green synthesis; cyanobacteria biochemical; energy source; synthesis

Journal Title: 3 Biotech
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.