LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microbial community changes in different underground compartments of potato affected yield and quality

Photo from wikipedia

Soil microbial communities are critical to plant health and productivity. Crop-associated microbial diversity may exhibit spatial specificity across regions and soil compartments. However, we lack sound evidence for the impact… Click to show full abstract

Soil microbial communities are critical to plant health and productivity. Crop-associated microbial diversity may exhibit spatial specificity across regions and soil compartments. However, we lack sound evidence for the impact of variation in soil microbial diversity on plant productivity caused by regional differences. The main aims of this study are to explore the structure and functionality of the belowground (potato tuber surface and rhizosphere) microbial communities in three compartments and assess whether these communities contribute to potato productivity. Significant differences in alpha and beta diversities of belowground microbiota were detected in different compartments and regions, mainly due to differences in available soil nutrients and pH. Changes to microbial diversity between bulk soil and rhizosphere or tuber surface soil were significantly negatively correlated with potato yield and nutrient content and positively correlated with starch content. We further found some bacterial (Mucilaginibacter, Dokdonella, and Salinispora) and fungal (Solicoccozyma, Scytalidium, and Humicola) genera closely associated with potato yield and quality. Aggregated boosted tree prediction revealed that soil physicochemical properties and microbial diversity of tuber surface soil contributed more to potato yield; tuber surface soil bacterial contributed more to potato starch and nutrient content. Our findings provide experimental evidence that the significant differences in soil microbial diversity and specific microbial taxa enrichment may potentially influence crop productivity under soil physicochemical property change scenarios in the agricultural ecosystem.

Keywords: soil; yield quality; microbial diversity; tuber surface

Journal Title: 3 Biotech
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.