LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Salicylate degradation by a cold-adapted Pseudomonas sp.

Photo by pueblovista from unsplash

Pseudomonas sp. strain MC1 was characterized as a cold-adapted, naphthalene-degrading bacterium that is able to grow in a broad temperature range of 5–30°C. MC1 harbors a catabolic plasmid, designated pYIC1,… Click to show full abstract

Pseudomonas sp. strain MC1 was characterized as a cold-adapted, naphthalene-degrading bacterium that is able to grow in a broad temperature range of 5–30°C. MC1 harbors a catabolic plasmid, designated pYIC1, which is almost identical to the archetypal NAH7 plasmid from the mesophilic bacterium Pseudomonas putida G7. On pYIC1, the catabolic genes for naphthalene degradation are clustered in two operons: nahAa-Ab-Ac-Ad-B-F-C-Q-E-D encoding the conversion of naphthalene to salicylate, and nahG-T-H-I-N-L-O-M-K-J encoding the conversion of salicylate through meta-cleavage pathway to pyruvate and acetyl CoA. NahH, the bona fide extradiol dioxygenase in MC1 salicylate metabolism, is thermolabile and is a cold-adapted enzyme. The thermal profiles of the NahH enzyme activities expressed in different hosts indicate the presence of a factor(s) or mechanism(s) to protect the thermolabile NahH enzyme (100% aa identity with MC1 counterpart) in G7. Overall, the results reported in the present work suggest that the thermolabile NahH might be a product of the cold-adaptation process of MC1 and thus contribute to the survival and growth ability of MC1 on salicylate and naphthalene in cold environments.

Keywords: salicylate; mc1; cold adapted; salicylate degradation

Journal Title: Annals of Microbiology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.