LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Differential response of single and co-inoculation of Rhizobium leguminosarum and Mesorhizobium ciceri for inducing water deficit stress tolerance in wheat

Photo from wikipedia

Limited soil water availability is a major threat to agricultural productivity because it inhibits plant growth and yields. Various strategies have been adopted to mitigate water deficit stress in plants;… Click to show full abstract

Limited soil water availability is a major threat to agricultural productivity because it inhibits plant growth and yields. Various strategies have been adopted to mitigate water deficit stress in plants; however, using extremophilic microbes with plant growth promoting traits could be an environmentally friendly and cost-effective approach to improve crop stress resilience. Rhizobia are well known for their symbiotic association with legumes, but they can also improve the fitness of non-legumes under stressed conditions. Thus, different rhizobial strains were isolated from nodules of two legumes (lentil and chickpea) and tested for osmoadaptation at four different polyethylene glycol (PEG-6000) levels, i.e., − 0.05, − 0.65, − 1.57, and − 2.17 MPa. Two stress-tolerant rhizobial strains, SRL5 and SRC8, were selected to evaluate their potential to induce tolerance against water deficits in wheat grown at four different percentages of field capacity (FC; 40, 60, 80, and 100%). Rhizobial inoculation improved physiological parameters and growth of wheat under water deficit; however, co-inoculation of selected rhizobia was better than sole application. Grain yield was most limited at the highest level of water deficit but sole inoculation with SRC8 and SRL5 improved yield by 24% and 19%, respectively. Combined inoculation increased grain yield by up to 48% compared to the uninoculated control. Thus, rhizobia from different legumes possess enormous potential for improving the resilience of cereals (non-legumes) to water deficit stress. Moreover, co-inoculation of rhizobia could be more beneficial than their sole application.

Keywords: deficit stress; water; inoculation; water deficit

Journal Title: Annals of Microbiology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.