In this paper Lie symmetry analysis method is applied to study nonlinear generalized Zakharov system which is the coupled nonlinear system of Schrödinger equations. With the aid of Lie point… Click to show full abstract
In this paper Lie symmetry analysis method is applied to study nonlinear generalized Zakharov system which is the coupled nonlinear system of Schrödinger equations. With the aid of Lie point symmetry, nonlinear generalized Zakharov system is reduced into the ODEs and some group invariant solutions are obtained where some solutions are new, which are not reported in literatures. Then the bifurcation theory and qualitative theory are employed to investigate nonlinear generalized Zakharov system. Through the analysis of phase portraits, some Jacobi-elliptic function solutions are found, such as the periodic-wave solutions, kink-shaped and bell-shaped solitary-wave solutions.
               
Click one of the above tabs to view related content.