LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical Simulation on the Resistance Performance of Ice-Going Container Ship Under Brash Ice Conditions

Photo by aaronburden from unsplash

Ice resistance prediction is a critical issue in the preliminary design of ships navigating brash ice conditions, which is closely related to the safety of a ship to navigate encounter… Click to show full abstract

Ice resistance prediction is a critical issue in the preliminary design of ships navigating brash ice conditions, which is closely related to the safety of a ship to navigate encounter brash ice, and has significant effects on the kinds of propellers and motor power needed. In research on this topic, model tests and full-scale tests on ships have thus far been the primary approaches. In recent years, the application of the finite element method (FEM) has also attracted interest. Some researchers have conducted numerical simulations on ship–ice interactions using the fluid–structure interaction (FSI) method. This study used this method to predict and analyze the resistance of an ice-going ship, and compared the results with those of model ship tests conducted in a towing tank with synthetic ice to discuss the feasibility of the FEM. A numerical simulation and experimental methods were used to predict the brash ice resistance of an ice-going container ship model in a condition with three concentrations of brash ice (60%, 80%, and 90%). A comparison of the results yielded satisfactory agreement between the numerical simulation and the experiments in terms of both observed phenomena and resistance values, indicating that the proposed numerical simulation has significant potential for use in related studies in the future.

Keywords: numerical simulation; brash ice; resistance; ice going; ice

Journal Title: China Ocean Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.