The extraordinary transmission (ET) phenomenon is examined for waves propagating through gaps of vertical thin barriers in channels with a hypersingular boundary element method model on the linear potential theory,… Click to show full abstract
The extraordinary transmission (ET) phenomenon is examined for waves propagating through gaps of vertical thin barriers in channels with a hypersingular boundary element method model on the linear potential theory, and an estimate formula based on small gap approximation for predicting the number of ET frequencies is proposed. Numerical computations are carried out to examine the influences of barrier number, barrier interval, gap size, gap position and barrier arrangement on extraordinary transmission and wave height in the channel. It shows that all of those factors evidently affect the extraordinary transmission frequencies. The contours of wave amplitude show that very high waves can be excited in the basins between barriers at the extraordinary transmission frequencies. Proper arrangement of barriers in a channel can avoid the occurrence of ET phenomenon and reduce wave height in the channel.
               
Click one of the above tabs to view related content.