LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cubic-to-inverted micellar and the cubic-to-hexagonal-to-micellar transitions on phytantriol-based cubosomes induced by solvents

Photo by schluditsch from unsplash

Cubosomes are nanoparticles composed of a specific combination of some types of amphiphilic molecules like lipids, such as phytantriol (PHY), and a nonionic polymer, like poloxamer (F127). Cubosomes have a… Click to show full abstract

Cubosomes are nanoparticles composed of a specific combination of some types of amphiphilic molecules like lipids, such as phytantriol (PHY), and a nonionic polymer, like poloxamer (F127). Cubosomes have a high hydrophobic volume (> 50%) and are good candidates for drug delivery systems. Due to their unique structure, these nanoparticles possess the ability to incorporate highly hydrophobic drugs. A challenge for the encapsulation of hydrophobic molecules is the use of organic solvents in the sample preparation process. In this study, we investigated the structural influence of four different solvents (acetone, ethanol, chloroform, and octane), by means of small-angle X-ray scattering and cryogenic electron microscopy techniques. In the presence of a high amount of acetone and ethanol (1:5 solvent:PHY volumetric ratio), for instance, a cubic-to-micellar phase transition was observed due to the high presence of these two solvents. Chloroform and octane have different effects over PHY-based cubosomes as compared to acetone and ethanol, both of them induced a cubic-to-inverse hexagonal phase transition. Those effects are attributed to the insertion of the solvent in the hydrophobic region of the cubosomes, increasing its volume and inducing such transition. Moreover, a second phase transition from reversed hexagonal-to-inverted micellar was observed for chloroform and octane. The data also suggest that after 24 h of solvent/cubosome incubation, some structural features of cubosomes change as compared to the freshly prepared samples. This study could shed light on drug delivery systems using PHY-based cubosomes to choose the appropriate solvent in order to load the drug into the cubosome. Graphical abstract

Keywords: transition; phy; drug delivery; based cubosomes; inverted micellar

Journal Title: Drug Delivery and Translational Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.