LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Co-delivery of doxorubicin and SIS3 by folate-targeted polymeric micelles for overcoming tumor multidrug resistance.

Multidrug resistance (MDR) is considered as a critical limiting factor for the successful chemotherapy, which is mainly characterized by the overexpression of ATP-binding cassette (ABC) transporter ABCB1 or ABCG2. In… Click to show full abstract

Multidrug resistance (MDR) is considered as a critical limiting factor for the successful chemotherapy, which is mainly characterized by the overexpression of ATP-binding cassette (ABC) transporter ABCB1 or ABCG2. In this study, folate-targeted polymeric micellar carrier was successfully constructed to co-delivery of doxorubicin (DOX) and SIS3 (FA/DOX/SIS3 micelles), a specific Smad3 inhibitor which sensitizes ABCB1- and ABCG2-overexpressing cancer cells to chemotherapeutic agents. The ratio of DOX to SIS3 in polymeric micelles was determined based on the anti-tumor activity against resistant breast cells. In addition, FA/DOX/SIS3 micelles exhibited a much longer circulation time in blood and were preferentially accumulated in resistant tumor tissue. Pharmacodynamic studies showed that FA/DOX/SIS3 micelles possessed superior anti-tumor activity than other DOX-based treatments. Overall, FA/DOX/SIS3 micelles are a promising formulation for the synergistic treatment of drug-resistant tumor.

Keywords: folate targeted; sis3; delivery; multidrug resistance; dox sis3; tumor

Journal Title: Drug delivery and translational research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.