Structural health monitoring (SHM) is essential for engineers to effectively evaluate structural performance. The accelerometers and strain gauges are commonly used for monitoring and testing structural performance. Placing both types… Click to show full abstract
Structural health monitoring (SHM) is essential for engineers to effectively evaluate structural performance. The accelerometers and strain gauges are commonly used for monitoring and testing structural performance. Placing both types of sensors is the key step for SHM and structural testing. This paper presents the development and application of the sensor placement optimization methods, which have been integrated and implemented in a versatile software tool for maximizing the sensor coverage capacity for structural performance assessment. The sensor placement solutions are optimized using a parallel optimization framework based on the competent genetic algorithm, leading to a number of features that enrich the application flexibility. The developed methods and software tool provide a generic approach for multi-type sensor placement. The integrated tool has been applied to the Indian River Inlet Bridge a large-span cable-stayed bridge to demonstrate and validate the effectiveness of the proposed solution methods for facilitating real world SHM practice.
               
Click one of the above tabs to view related content.