This study investigated the performance of the mesoscale Weather Research and Forecasting (WRF) model in predicting near-surface atmospheric temperature and wind for a complex underlying surface in Northwest China in… Click to show full abstract
This study investigated the performance of the mesoscale Weather Research and Forecasting (WRF) model in predicting near-surface atmospheric temperature and wind for a complex underlying surface in Northwest China in June and December 2015. The spatial distribution of the monthly average bias errors in the forecasts of 2-m temperature and 10-m wind speed is analyzed first. It is found that the forecast errors for 2-m temperature and 10-m wind speed in June are strongly correlated with the terrain distribution. However, this type of correlation is not apparent in December, perhaps due to the inaccurate specification of the surface albedo and freezing–thawing process of frozen soil in winter in Northwest China in the WRF model. In addition, the WRF model is able to reproduce the diurnal variation in 2-m temperature and 10-m wind speed, although with weakened magnitude. Elevations and land-use types have strong influences on the forecast of near-surface variables with seasonal variations. The overall results imply that accurate specification of the complex underlying surface and seasonal changes in land cover is necessary for improving near-surface forecasts over Northwest China.
               
Click one of the above tabs to view related content.