LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of Background Dynamic and Thermodynamic States on Distinctive Annual Cycle of Near-Equatorial Tropical Cyclogenesis over the Western North Pacific

Photo by john_cameron from unsplash

In a sharp contrast to tropical cyclone (TC) genesis over the main development region of the western North Pacific (WNP), near-equatorial (0°–5°N) TCs exhibit a distinctive annual cycle, peaking in… Click to show full abstract

In a sharp contrast to tropical cyclone (TC) genesis over the main development region of the western North Pacific (WNP), near-equatorial (0°–5°N) TCs exhibit a distinctive annual cycle, peaking in boreal winter and being inactive in boreal summer. The relative roles of dynamic and thermodynamic background states on near-equatorial TCs formation were investigated based on the observational diagnosis of the genesis potential index (GPI) and high-resolution model simulations. It is found that the background vorticity makes a major contribution to the distinctive annual cycle, while mean temperature and specific humidity fields are not critical. Numerical simulations further indicate that seasonal mean cyclonic vorticity in boreal winter has three effects on TC genesis near the equator. First, the environmental cyclonic vorticity interacts with TC vortex to promote a mid-level outflow, which strengthens boundary layer friction induced ascending motion and thus condensational heating. Second, it produces an equivalent Coriolis effect (via enhanced absolute vorticity), which strengthens positive feedback between primary and secondary circulation. Third, it helps to merge small-scale vortical hot towers (VHTs) into a mesoscale core through vorticity segregation process. However, background vorticity in boreal summer has an opposite effect on TC development near the equator.

Keywords: annual cycle; vorticity; western north; distinctive annual; near equatorial

Journal Title: Journal of Meteorological Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.