We use 71-yr (1948–2018) reanalysis data to investigate the interdecadal variation in the atmospheric heat source (Q1) over the Tibetan Plateau and surrounding Asian monsoon region (AMTP) and its effect… Click to show full abstract
We use 71-yr (1948–2018) reanalysis data to investigate the interdecadal variation in the atmospheric heat source (Q1) over the Tibetan Plateau and surrounding Asian monsoon region (AMTP) and its effect on the Northern Hemisphere summer circulation. The large-scale circulation driven by Q1 over the AMTP is characterized by a center of convergent (divergent) or low (high) potential wind function in the lower (upper) troposphere. Q1 over the AMTP shows a clear interdecadal variation (with positive-negative-positive phases) and these three phases correspond to the time periods 1948–1972, 1973–2005, and 2006–2018, respectively. The thermal circulation has a corresponding interdecadal variation as a response to the interdecadal variation in Q1. An enhanced Q1 leads to an increase in the conversion of the total potential energy to non-divergent wind kinetic energy via the divergent wind velocity. The maximum conversion occurs in the tropopause. The primary thermal forcing for Q1 is produced by the intense, large volume precipitation of the summer monsoon. This induces a response in the large-scale circulation, leading to large-scale divergence patterns. The synergistic effects of Pacific Decadal Oscillation (PDO) and North Atlantic Multi-decadal Oscillation (AMO) influence Q1 over the AMTP, which is ultimately responsible for the modulation of variations in the global divergent circulation. The global divergent circulation in summer is therefore essentially a direct thermodynamic circulation driven by the strong Q1 over the AMTP.
               
Click one of the above tabs to view related content.