Using NCEP/NCAR reanalysis data, we investigate the statistical characteristics and the long-term variations of major sudden stratospheric warming (SSW) events in the Northern Hemisphere. We find that the strength and… Click to show full abstract
Using NCEP/NCAR reanalysis data, we investigate the statistical characteristics and the long-term variations of major sudden stratospheric warming (SSW) events in the Northern Hemisphere. We find that the strength and duration of major SSW events have increased from 1958 to 2019 because of the strengthening of winter planetary wave activity. The frequency of the SSW events related to displacement or split of the polar vortex differs between early, middle, and late winter. Early (middle) winter is dominated by displacement (split) SSW events, while late winter sees almost equal frequency of these two types of events. This is due to the differences in the relative strength of wavenumber-1 and wavenumber-2 planetary wave activity among the three winter periods. As a result of the increase in upward planetary wave activity and the decrease in westerly winds around the polar vortex in middle winter, more SSW events tend to occur in middle winter. In addition, we reveal the influence of the downward propagation of different types of SSW events on the surface temperature anomaly. Compared with early displacement SSW events, middle split SSW events are followed by more surface cold centers in Russia, northern China, and North America.
               
Click one of the above tabs to view related content.