LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Discovery of genomic regions associated with resistance to late wilt disease caused by Harpophora maydis (Samra, Sabet and Hing) in maize (Zea mays L.).

Photo by cdc from unsplash

Late wilt disease (LWD) caused by Harpophora maydis (Samra, Sabet and Hing) is emerging as major production constraint in maize across the world. As a prelude to develop maize hybrid… Click to show full abstract

Late wilt disease (LWD) caused by Harpophora maydis (Samra, Sabet and Hing) is emerging as major production constraint in maize across the world. As a prelude to develop maize hybrid resistance to LWD, genetic basis of resistance was investigated. Two F2:3 mapping populations (derived from CV156670 × 414-33 (P-1) and CV156670 × CV143587 (P-2)) were challenged with LWD at two locations (Kallinayakanahalli and Muppadighatta) during 2017 post-rainy season. A wider range of LWD scores was observed at both locations in both the populations. LWD response was influenced by significant genotype × location interaction. Six and 56 F2:3 progeny families showed resistance level better than resistant parent. A total of 150 and 199 polymorphic single nucleotide polymorphism markers were used to genotype P-1 and P-2, respectively. Inclusive composite interval mapping was performed to detect significant Quantitative Trait Loci (QTL), QTL × QTL, QTL × location interaction effects. Three major and four minor QTL controlling LWD resistance were detected on chromosome-1. The position and effect of the QTL varied with the location. Significant di-QTL interactions involving QTL (with significant and/or non-significant effects) located within and between all the ten chromosomes were detected. Five of the seven detected QTL showed significant QTL × location interaction. Though two major QTL (q-lw-1.5 and q-lw-1.6) with lower Q×L interaction effects could be considered as stable, their phenotypic variance is not large enough to deploy them in Marker Assisted Selection (MAS). However, these QTL are of paramount importance in accumulating positive alleles for LWD resistance breeding.

Keywords: harpophora maydis; wilt disease; resistance; late wilt; caused harpophora; qtl

Journal Title: Journal of applied genetics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.