LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Magnetic and Electric Field Uniformity on Coded Aperture Imaging Quality in a Cycloidal Mass Analyzer

Photo by glenncarstenspeters from unsplash

AbstractCycloidal mass analyzers are unique sector mass analyzers as they exhibit perfect double focusing, making them ideal for incorporating spatial aperture coding, which can increase the throughput of a mass… Click to show full abstract

AbstractCycloidal mass analyzers are unique sector mass analyzers as they exhibit perfect double focusing, making them ideal for incorporating spatial aperture coding, which can increase the throughput of a mass analyzer without affecting the resolving power. However, the focusing properties of the cycloidal mass analyzer depend on the uniformity of the electric and magnetic fields. In this paper, finite element simulation and charged particle tracing were used to investigate the effect of field uniformity on imaging performance of a cycloidal mass analyzer. For the magnetic field, we evaluate a new permanent magnet geometry by comparing it to a traditional geometry. Results indicate that creating an aperture image in a cycloidal mass spectrometer with the same FWHM as the slit requires less than 1% variation in magnetic field strength along the ion trajectories. The new magnet design, called the opposed dipole magnet, has less than 1% field variation over an area approximately 62 × 65 mm; nearly twice the area available in a traditional design of similar size and weight. This allows ion imaging across larger detector arrays without loss of resolving power. In addition, we compare the aperture imaging quality of a traditionally used cycloidal mass spectrometer electric design with a new optimized design with improved field uniformity. Graphical abstractᅟ

Keywords: field; aperture; mass; cycloidal mass; mass analyzer

Journal Title: Journal of The American Society for Mass Spectrometry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.