AbstractSince its introduction, matrix-assisted laser desorption/ionization (MALDI) has been widely used for the mass analysis of biomolecules. The “soft ionization” of MALDI enables accurate mass determination of intact biomolecules. However,… Click to show full abstract
AbstractSince its introduction, matrix-assisted laser desorption/ionization (MALDI) has been widely used for the mass analysis of biomolecules. The “soft ionization” of MALDI enables accurate mass determination of intact biomolecules. However, the ionization and desorption processes of MALDI are not adequately soft as many labile biomolecules, such as glycoconjugates containing sialic acid or the sulfate functional group, easily dissociate into fragments and sometimes, no intact molecules are observed. In this study, we compared the conventional matrix of MALDI, namely 2,5-dihydroxybenzoic acid, to various soft matrices of MALDI—specifically, 5-methoxysalicylic acid, diamond nanoparticle trilayers, HgTe nanostructures, ionic liquid, and droplets of frozen solutions—by using three labile glycoconjugates as analytes: gangliosides, heparin, and pullulan. We demonstrated that droplets of frozen solution are the softest matrices for gangliosides and heparin. In particular, droplets of frozen solution do not generate fragments for gangliosides and can be used to determine the relative abundance of various gangliosides, whereas ionic liquid 2,5-dihydroxybenzoic acid butylamine is the most suitable matrix for pullulan mass analysis. Graphical Abstract
               
Click one of the above tabs to view related content.