LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DFT and Electrochemical Investigations on the Corrosion Inhibition of Mild Steel by Novel Schiff’s Base Derivatives in 1 M HCl Solution

Photo by davidhellmann from unsplash

This study aims to explore the inhibitory action of certain derivatives of Schiff’s base, namely 4-(pyridin-2-ylimino) pentan-2-one (CE5),4-(pyrimidin-2-ylimino) pentan-2-one (CE4) and 4-((1H-tetrazol-5-yl) imino) pentan-2-one (CE20) against mild steel (MS) corrosion… Click to show full abstract

This study aims to explore the inhibitory action of certain derivatives of Schiff’s base, namely 4-(pyridin-2-ylimino) pentan-2-one (CE5),4-(pyrimidin-2-ylimino) pentan-2-one (CE4) and 4-((1H-tetrazol-5-yl) imino) pentan-2-one (CE20) against mild steel (MS) corrosion in 1 M HCl by the gravimetric, stationary and transient method. For additional information on the inhibitory properties of the studied compounds, scanning electron microscopy (SEM) and functional density theory (DFT) calculations were also performed. The effectiveness of the Schiff’s base derivatives studied follows the order: CE20 > CE4 > CE5. The electrochemical impedance curves show that the corrosion reaction is controlled by a charge transfer process, while the potentiodynamic polarization curves indicate that the synthesized compounds act as a mixed-type inhibitor. The adsorption process follows the Langmuir isotherm. Kinetic, as well as thermodynamic parameters, were calculated and discussed. The increase in EHOMO and decrease in gap energy ΔEgap lead to an increase in the inhibition efficiency. Results obtained from quantum chemical studies are in good agreement with quantum chemical parameters and experimental inhibition efficiencies.

Keywords: mild steel; base derivatives; corrosion; base; schiff base; inhibition

Journal Title: Arabian Journal for Science and Engineering
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.