Based on Pawlak’s rough set theory, we study and investigate the roughness in non-commutative residuated lattices, which are generalizations of non-commutative fuzzy structures such as MV-algebras and BL-algebras. We give… Click to show full abstract
Based on Pawlak’s rough set theory, we study and investigate the roughness in non-commutative residuated lattices, which are generalizations of non-commutative fuzzy structures such as MV-algebras and BL-algebras. We give many theorems and examples to describe the rough approximations. Also, to investigate the properties of roughness of subsets (and of course filters) more closely, we consider some different kinds of filters such as Boolean filters and prime filters. Especially, we prove that with respect to some certain filters, the obtained approximations form a Boolean algebra or a pseudo MTL-algebra.
               
Click one of the above tabs to view related content.