LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

$$(\alpha ,\beta )$$(α,β)-A-Normal operators in semi-Hilbertian spaces

Photo from archive.org

Let $${\mathcal {H}}$$H be a Hilbert space and let A be a positive bounded operator on $${\mathcal {H}}$$H. The semi-inner product $$\langle u\;|\;v \rangle _A:=\langle Au\;|\;v\rangle ,\;\;u,v \in {\mathcal {H}}$$⟨u|v⟩A:=⟨Au|v⟩,u,v∈H… Click to show full abstract

Let $${\mathcal {H}}$$H be a Hilbert space and let A be a positive bounded operator on $${\mathcal {H}}$$H. The semi-inner product $$\langle u\;|\;v \rangle _A:=\langle Au\;|\;v\rangle ,\;\;u,v \in {\mathcal {H}}$$⟨u|v⟩A:=⟨Au|v⟩,u,v∈H induces a semi-norm $$\left\| .\;\right\| _A$$.A on $${\mathcal {H}}.$$H. This makes $${\mathcal {H}}$$H into a semi-Hilbertian space. In this paper, we introduce a new class of operators called $$(\alpha ,\beta )$$(α,β)-A-normal operators in semi-Hilbertian spaces. Some structural properties of this class of operators are established.

Keywords: beta normal; normal operators; operators semi; semi hilbertian; alpha beta; hilbertian spaces

Journal Title: Afrika Matematika
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.