In this paper, we find the necessary and sufficient conditions, inclusion relations for Poisson distribution series $${\mathcal {K}}(m,z)=z+\sum \nolimits _{n=2}^{\infty }\frac{m^{n-1}}{(n-1)!}e^{-m}z^{n}$$ belonging to a subclass $$\mathcal {TS}(\lambda ,\alpha ,\beta )$$… Click to show full abstract
In this paper, we find the necessary and sufficient conditions, inclusion relations for Poisson distribution series $${\mathcal {K}}(m,z)=z+\sum \nolimits _{n=2}^{\infty }\frac{m^{n-1}}{(n-1)!}e^{-m}z^{n}$$ belonging to a subclass $$\mathcal {TS}(\lambda ,\alpha ,\beta )$$ of analytic functions with negative coefficients. Further, we consider the integral operator $$\mathcal { G(}m,z{)=}\int _{0}^{z}\frac{{\mathcal {F}}(m,t)}{t}dt$$ belonging to the above class.
               
Click one of the above tabs to view related content.