A series of perovskite CaTiO3:Dy3+ nanophosphors have been prepared via solid state reaction method in order to investigate the structural, spectral and photometric properties. The structural, morphological and spectral properties… Click to show full abstract
A series of perovskite CaTiO3:Dy3+ nanophosphors have been prepared via solid state reaction method in order to investigate the structural, spectral and photometric properties. The structural, morphological and spectral properties of prepared nanophosphors were systematically characterized by XRD, FESEM, EDX, Photoluminescence, PL decay time and UV-Visible spectroscopy. The novel CaTiO3:Dy3+ nanophosphors exhibited single phase orthorhombic structure with space group Pbnm. The high magnification FESEM images of prepared sample demonstrated the particle size in the range 220-240 nm. The photoluminescence properties of Dy3+ doped CaTiO3 nanophosphors were investigated through excitation, emission spectra and decay time by varying the concentration of activator (Dy3+). Under the excitation of 386 nm UV light, Dy3+ activated CaTiO3 nanophosphors exhibited its characteristic excellent intense emissions in blue and yellow region around the wavelength 484 and 575 nm due to the transition 4F9/2→6H15/2 and 4F9/2 → 6H13/2 respectively. The photometric parameters such as CIE-coordinate and correlated color temperature (CCT) was also calculated. The CIE- coordinate (0.28, 0.32) was found near white light and CCT value was found to be 9222.31 K for optimum composition Ca0.96TiO3:0.04Dy3+ which was useful for cold light emission. The affirmative experimental results indicated that the prepared nanophosphors could be the favorable candidate for lighting applications.
               
Click one of the above tabs to view related content.