LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Large-Dimensional Organic Semiconductor Crystals with Poly(butyl acrylate) Polymer for Solution-Processed Organic Thin Film Transistors

Photo from wikipedia

Despite solution processed organic semiconductors have attracted much research attention, the randomized crystallization and large prevalence of grain boundary remain as a challenge to realize high performance organic electronic applications.… Click to show full abstract

Despite solution processed organic semiconductors have attracted much research attention, the randomized crystallization and large prevalence of grain boundary remain as a challenge to realize high performance organic electronic applications. In this work, we report the incorporation of poly(butyl acrylate) polymer additive with organic semiconductors with the mediation of a solvent vapor annealing method in order to modify the nucleation and crystal growth process. As 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) was experimented as a benchmark semiconductor, we demonstrated that the TIPS pentacene/poly(butyl acrylate) mixture exhibits rigidly aligned crystals, large grain width and improved areal coverage. In particular, thin film morphological characterization indicated a substantial reduction in misorientation angle by approximately two orders of magnitude as well as a 5-fold enlargement of grain width. A grain boundary model is proposed as a theoretic basis to understand the connection between grain width and hole mobility. Bottom-gate, top-contact thin film transistors based on TIPS pentacene/poly(butyl acrylate) blends demonstrated enhanced hole mobility of up to 0.11 cm2/Vs.

Keywords: grain; butyl acrylate; thin film; poly butyl

Journal Title: Electronic Materials Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.