LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of sustainable approaches for converting the agro-weeds Ludwigia hyssopifolia to biogas production

Photo from wikipedia

This study aimed to evaluate potential biogas production from Ludwigia hyssopifolia (water primrose) and examine the effect of alkaline pretreatment on samples through biogas production efficiencies. The research was carried… Click to show full abstract

This study aimed to evaluate potential biogas production from Ludwigia hyssopifolia (water primrose) and examine the effect of alkaline pretreatment on samples through biogas production efficiencies. The research was carried out for 45 days of operation from anaerobic mono-digestion of water primrose by using a batch experiment. Pretreatment was applied for substrate using sodium hydroxide (NaOH) solution (w/v) at different concentrations (0, 1, 2, 3, and 4%) with 10% of total solids (TS) based on dry matter. The scanning electron microscopy (SEM) images were captured to investigate the characteristics of the raw material and pretreated biomass. The results showed that the treatment with 2% NaOH has the highest performance in biogas yield (8072.00 mL) and methane content (64.72%). Notably, the increase (3, 4%) or decreasing (0, 1%) NaOH concentration in treating water primrose did not achieve a significant improvement. Further investigation in the power potential of produced biogas was calculated, and the result was 22,382.19 W/m3 power. Consequently, the feasibility of the alkaline pretreatment method for biogas production and achievable potential for energy efficiency indicates that water primrose is appropriate agro-weed biomass for bioenergy applications.

Keywords: biogas; water primrose; ludwigia hyssopifolia; biogas production

Journal Title: Biomass Conversion and Biorefinery
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.