LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation of ZnO/BaTiO3 adsorbent using Elaeagnus Angustifolia L. leaf extract and its evaluation for ciprofloxacin removal from aqueous solutions: an optimization study

Photo by renran from unsplash

Especially, most papers have reported an increase in antibiotic resistance (AR) bacterial infections during the COVID-19 pandemic. Because of the outbreak of the SARS-CoV-2, antimicrobial resistance (AMR) should be controlled… Click to show full abstract

Especially, most papers have reported an increase in antibiotic resistance (AR) bacterial infections during the COVID-19 pandemic. Because of the outbreak of the SARS-CoV-2, antimicrobial resistance (AMR) should be controlled and reduced. Researchers have reported that the adsorption technique is an sufficient procedure for separating drugs such as antibiotics from aqueous solutions. The prepared of ZnO/BaTiO 3 nanocomposite using Elaeagnus Angustifolia L. leaf extract was successfully obtained using green route. The synthesized nanocomposite was interacted with ciprofloxacin hydrochloride (CPF) to aim at eliminating the antibiotic from aqueous solutions. The incorporation of Elaeagnus Angustifolia leaf extract onto ZnO/BaTiO 3 proved a sustainable chemistry study. Hence, this study indicated that green nanoparticles include neither the use of hazardous chemicals nor toxic chemicals. FTIR, XRD, and SEM-EDX analyses were applied to give information about the structural properties of the green nanocomposite. Box-Behnken design (BBD) was executed by response surface methodology (RSM) to gain optimal conditions. The effect of pH, initial concentration of CPF, and nanocomposite dose on CPF-nanocomposite interaction was examined. The experimental findings of adsorption study revealed that the optimal adsorption capacity of CPF onto ZnO/BaTiO 3 was found as 125.29 mgg -1 under optimal conditions (adsorbent dose: 3.00 mg, pH value of solution: 9.88, initial concentration CPF: 49.63 mgL -1 ).

Keywords: elaeagnus angustifolia; angustifolia leaf; zno; aqueous solutions; study; leaf extract

Journal Title: Biomass Conversion and Biorefinery
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.