LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Isolation of Enteromorpha species and analyzing its crude extract for the determination of in vitro antioxidant and antibacterial activities

Photo by louishansel from unsplash

The extract of green algae (Enteromorpha species) was prepared by the cold extraction technique. The prepared algal extract exhibits a high antioxidant potential due to the presence of sulfated polysaccharides… Click to show full abstract

The extract of green algae (Enteromorpha species) was prepared by the cold extraction technique. The prepared algal extract exhibits a high antioxidant potential due to the presence of sulfated polysaccharides (SPs). The extract of Enteromorpha species was analyzed to identify the presence of significant biochemical composition. The extract of Enteromorpha species was evaluated to assess the DPPH-free radical scavenging activity, total antioxidant activity by phosphomolybdenum assay, in vitro anti-bacterial by agar diffusion method, and cell viability by MTT assay. It was found that the extract of Enteromorpha species contains the various chemical composition such as carbohydrates (0.13 g/ml), xylose (0.0819 g/ml), sulfate (0.0153 g/ml), and proteins (0.0363 g/ml). Phytochemicals such as flavonoids and phenolic compounds were found in the extract. The antioxidant potential of the crude extract was investigated by the total antioxidant assay (400 µl/ml) and DPPH-free radical scavenging assay (5 µl/ml). The prepared green algal extract produced the highest inhibitory zone up to 18 mm, 13 mm, and 18 mm at 200 µl/ml concentrations against Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli, respectively. The above results revealed that the extract of Enteromorpha species exhibited strong antioxidant and anti-bacterial activities due to the presence of sulfated polysaccharides.

Keywords: extract; extract enteromorpha; crude extract; vitro; enteromorpha species

Journal Title: Biomass Conversion and Biorefinery
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.