AbstractGraphite formation in the solid state is both in ductile cast irons and in steels strongly promoted by high silicon contents above 3 wt.% Si. The matrix microstructure in austempered ductile iron… Click to show full abstract
AbstractGraphite formation in the solid state is both in ductile cast irons and in steels strongly promoted by high silicon contents above 3 wt.% Si. The matrix microstructure in austempered ductile iron can be further refined by secondary graphite if the austenitization, quench, and isothermal transformation into ausferrite are preceded by an austenitization at a slightly higher temperature followed by quench to martensite, resulting in higher carbon content than being soluble at the second austenitization temperature. Hypoeutectoid steels with high silicon contents can be rapidly graphitized, causing recrystallization of surrounding ferrite due to plastic deformation making room for less dense graphite. In rolled steels, the interface between manganese sulfide and steel matrix is the most common nucleation site. Voids are formed when graphite is partly or completely dissolved during austenitization in succeeding hardening heat treatments, but the mechanical properties can still be good if the graphite particles dissolved into voids are below 20 µm. Graphitized Si-solution strengthened ferritic steels may perform similar to free-cutting steels but with improved mechanical properties.
               
Click one of the above tabs to view related content.