LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structurally simple D–A-type organic sensitizers for dye-sensitized solar cells: effect of anchoring moieties on the cell performance

Photo from archive.org

In this work, we report synthesis and device fabrication studies of four metal-free D–A-type dyes (A1–A4) based on structurally simple N,N-dimethyl-4-vinyl aniline carrying four different acceptor/anchoring groups, as sensitizers for… Click to show full abstract

In this work, we report synthesis and device fabrication studies of four metal-free D–A-type dyes (A1–A4) based on structurally simple N,N-dimethyl-4-vinyl aniline carrying four different acceptor/anchoring groups, as sensitizers for sensitizing photoanode (TiO2). In the sensitizers, N,N-dimethylaniline ring acts as an electron donor, while barbituric acid, N,N-dimethyl barbituric acid, thiobarbituric acid and N,N-diethyl thiobarbituric acid function as electron acceptor/anchoring units. They were synthesized in good yield via Knoevenagel protocol in neutral condition without any catalyst. Further, they were subjected to structural, electrochemical and optical characterization in order to evaluate their structure, band gap and absorption/emission behavior. The studies reveal that all the four dyes have thermodynamic feasibility of electron injection as well as electron recombination; their optical band gaps were found to be in the range of 2.35–2.56 eV. High-quality crystals of A2 and A4 were grown by slow evaporation technique using its solution with 1:1 pet ether (60–80 °C)/ethyl acetate solvent mixture at room temperature. Their SC-XRD studies disclose that the crystals are in the triclinic system with space group P-1. Further, DFT studies were performed using Turbomole V7.1 software package to evaluate their optimized geometry and HOMO and LUMO levels. Finally, DSSC device fabricated with the dye A1 showed relatively good efficiency when compared to other dyes mainly due to the effective binding of barbituric acid on the surface of TiO2 through NH or OH functional group.Graphical Abstract

Keywords: barbituric acid; type organic; simple type; acid; structurally simple

Journal Title: Journal of the Iranian Chemical Society
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.