LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application of ion-imprinted polymer synthesized by precipitation polymerization as an efficient and selective sorbent for separation and pre-concentration of chromium ions from some real samples

Photo by naomish from unsplash

In this study, a new Cr(III)-imprinted polymer (Cr(III)-IIP) is prepared from CrCl3·6H2O, methacrylic acid functional monomer, ethyleneglycoldimethacrylate cross-linking agent, 2,2ʹ-azobisisobutyronitrile radical initiator and 2,2-(azanediylbis (ethane-2,1-diyl))bis(isoindoline-1,3-dione) ligand. To obtain the maximum… Click to show full abstract

In this study, a new Cr(III)-imprinted polymer (Cr(III)-IIP) is prepared from CrCl3·6H2O, methacrylic acid functional monomer, ethyleneglycoldimethacrylate cross-linking agent, 2,2ʹ-azobisisobutyronitrile radical initiator and 2,2-(azanediylbis (ethane-2,1-diyl))bis(isoindoline-1,3-dione) ligand. To obtain the maximum adsorption capacity, the optimum condition was studied through pH, type and concentration of eluent, IIP weight, sample volume as well as the adsorption and desorption times. The Cr(III) ion content was determined via flame atomic absorption spectrometer. In optimum conditions, the adsorption capacity of the IIP for Cr(III) was obtained to be 74.65 mg g−1, using 50 mg of IIP and the initial pH solution of 3.0. Both the adsorption and desorption times for quantitative analyses of Cr(III) ions were 15 and 5 min; respectively. After elution of the adsorbed ions by 3 mL of 4 mol L−1 HNO3 aqueous solution, the established IIP-based SPE procedure provides a reasonable pre-concentration factor of 100. The IIP-based pre-concentration method provides a low detection limit of 1.7 µg L−1 with good repeatability (RSD = 3.22%). Reusability studies confirmed that synthesis IIP is reusable and recoverable up to six cycles. According to the selectivity experiments, it was concluded that the prepared sorbent possesses more affinity toward Cr(III) ions than other ions such as Al3+, Pb2+, Cu2+, Mn2+, Fe2+, Zn2+, and Ni2+ ions. To evaluate the potential applicability of the proposed separation method, the pre-concentration and determination of trace amounts of Cr(III) were performed successfully in food samples with complex matrices, a bestial sample (i.e. cow liver) and an herbal product (i.e., broccoli) as real samples.

Keywords: pre concentration; real samples; imprinted polymer; iip; concentration

Journal Title: Journal of the Iranian Chemical Society
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.