LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cellulose acetate/SiO2-poly(2-Acrylamido-2-methylpropane sulfonic acid) hybrid nanofiltration membrane: application in removal of ceftriaxone sodium

Photo by redowandhrubo from unsplash

AbstractRemoval of ceftriaxone sodium antibiotic from water using cellulose acetate (CA) mixed matrix nanofiltration membranes was investigated in this work. Silica nanoparticles were functionalized with (3-aminopropyl)triethoxysilane (APTES). Then, the hydrophilic… Click to show full abstract

AbstractRemoval of ceftriaxone sodium antibiotic from water using cellulose acetate (CA) mixed matrix nanofiltration membranes was investigated in this work. Silica nanoparticles were functionalized with (3-aminopropyl)triethoxysilane (APTES). Then, the hydrophilic and negatively charged 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) monomer was grafted from the surface of the amino-functionalized silica nanoparticles via surface-initiated redox polymerization. Finally, CA/silica and CA/modified silica nanocomposite membranes were prepared via phase inversion method, and the rejection of ceftriaxone sodium was studied. Rejection ratios were about 90 and 96% for CA/silica and CA/modified silica membranes at pH 8, respectively, wherein both were higher compared to the neat CA membrane. In fact, in case of nanocomposite membranes, size exclusion and charge repulsion between negatively charged functional groups of the membrane and anionic groups of drug operated synergistically at alkaline pH values, and the pharmaceutical rejection was improved.Graphical abstract

Keywords: ceftriaxone; ceftriaxone sodium; cellulose acetate; nanofiltration

Journal Title: Journal of the Iranian Chemical Society
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.