One of the attractive iron-based metal organic framework (MOF) MIL-101(Fe) (Material Institute Lavoisier, MIL) and amine-functionalized NH2-MIL-101(Fe) materials were synthesized by conventional solvothermal method and characterized by TGA (Thermo Gravimetric… Click to show full abstract
One of the attractive iron-based metal organic framework (MOF) MIL-101(Fe) (Material Institute Lavoisier, MIL) and amine-functionalized NH2-MIL-101(Fe) materials were synthesized by conventional solvothermal method and characterized by TGA (Thermo Gravimetric Analysis), SEM (Scanning Electron Microscopy), XRD (X-Ray Diffractograms), BET (Braunner Emmet Teller) and FTIR (Fourier Transform Infrared Spectroscopy). Characterization results indicated that MIL-101(Fe) materials have well defined morphology, good thermal stability, high surface area and also high porosity. These MOF materials were used as photocatalysts for photodegradation of a pesticide, imidacloprid (IMC). The response surface methodology (RSM) was applied in designing the IMC photodegradation experiments for evaluating the interactive effects of independent variables and determining the optimum condition. Central composite design as five independent variables such as initial MIL-101(Fe) concentration, initial IMC concentration, H2O2 concentration, pH and time were coded with low and high level and IMC removal percent was obtained as a response. As for the RSM results on the optimum photocatalytic condition, maximum IMC removal values were determined as 100% for the both catalysts in the end of the 30 min. The adsorption efficiencies of catalysts were also investigated and obtained results showed that amine-functionalized MIL-101(Fe) was the more effective sorbent than MIL-101(Fe).
               
Click one of the above tabs to view related content.