Purpose To determine if there is a difference in the wavelet variances of seizure and non-seizure channels in the EEG of an epileptic subject. Methods A six-level decomposition was applied… Click to show full abstract
Purpose To determine if there is a difference in the wavelet variances of seizure and non-seizure channels in the EEG of an epileptic subject. Methods A six-level decomposition was applied using the Maximal Overlap Discrete Wavelet Transform (MODWT). The wavelet variance and 95% CIs were calculated for each level of the decomposition. The number of changes in variance for each level were found using a change-point detection method of Whitcher. The Kruskal–Wallis test was used to determine if there were differences in the median number of change points within channels and across frequency bands (levels). Results No distinctive pattern was found for the wavelet variances to differentiate the seizure and non-seizure channels. The seizure channels tended to have lower variances for each level and overall, but this pattern only held for one of the three seizure channels (RAST4). The median number of change points did not differ between the seizure and non-seizure channels either within each channel or across the frequency bands. Conclusion The use of the MODWT in examining the variances and changes in variance did not show specific patterns which differentiate between seizure and non-seizure channels.
               
Click one of the above tabs to view related content.