LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Starch-assisted sol–gel synthesis of magnetic CuFe2O4 powder as photo-Fenton catalysts in the presence of oxalic acid

Photo by picasso_the_line_art from unsplash

Magnetic photo-Fenton catalysts based on spinel CuFe2O4 were successfully prepared by the starch-assisted sol–gel method. Various synthetic conditions such as annealing temperatures (700, 800 and 900 °C) and molar ratios of… Click to show full abstract

Magnetic photo-Fenton catalysts based on spinel CuFe2O4 were successfully prepared by the starch-assisted sol–gel method. Various synthetic conditions such as annealing temperatures (700, 800 and 900 °C) and molar ratios of Cu2+/Fe3+/C6H10O5 in the precursor solution (from 1:2:2 to 1:2:4) were, respectively, used in order to study the influences of annealing temperatures and precursor starch contents on the magnetic and catalytic properties of CuFe2O4 powders. The photo-Fenton catalytic activity was evaluated via the degradation of methylene blue under ultraviolet and visible irradiation with H2C2O4 as a new oxidizing agent. According to the results, when the annealing temperature increased to 800 °C, the spinel CuFe2O4 phase amount was increased, which strongly enhances the photo-Fenton catalytic performance. However, above 800 °C, the catalytic activity was reduced, due to the increase in particle size. The starch content also affected the surface Cu2+ content and the particle size of catalysts. The catalyst prepared at 800 °C with the molar Cu2+/Fe3+/C6H10O5 ratio of 1:2:3 presented the best photo-Fenton performance, owing to its highest surface Cu2+ content. This catalyst also exhibits ferromagnetic properties (saturation magnetization of 25.836 emu/g and coercivity of 1010.23 Oe), which allows them to be easily separated from the solution by a magnet.

Keywords: fenton catalysts; photo fenton; photo; starch assisted

Journal Title: International Journal of Environmental Science and Technology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.