Human dermal fibroblast is essential in wound healing of the skin through the synthesis of extracellular matrix proteins. With respect to oxidative stress, the effects of remifentanil on human dermal… Click to show full abstract
Human dermal fibroblast is essential in wound healing of the skin through the synthesis of extracellular matrix proteins. With respect to oxidative stress, the effects of remifentanil on human dermal fibroblast have received little attention. Therefore, we investigated the effects of remifentanil on the apoptosis and autophagic reaction of human dermal fibroblasts under oxidative stress. The subjects were divided into the following groups: Control group: cells were incubated at 37°C in a humidified atmosphere with 5% CO2. Hydrogen peroxide (H2O2) group: cells were exposed to H2O2 for 2 h. RPC/H2O2 group: cells were pretreated with remifentanil for 2 h and exposed H2O2 for 2 h. 3-MA/RPC/H2O2 group: cells were pretreated with 3-methyladenine (3-MA) and remifentanil for 1 h and 2 h, respectively. We measured cell viability using MTT assay. Western blot analysis was used to determine the expression levels of proteins associated with apoptosis and autophagy. Quantification of apoptotic cells was performed using flow cytometer analysis, and autophagic vacuoles were observed under a fluorescence microscope. Remifentanil treatment increased the proliferation of human dermal fibroblast and decreased apoptotic cell death, enhancing autophagic activity under oxidative stress. However, 3-MA, the autophagy pathway inhibitor, inhibited the protective effect of remifentanil in oxidative stress. This study demonstrates that remifentanil activated autophagy and decreased apoptotic death of human dermal fibroblasts under oxidative stress. Our results suggest that remifentanil may help in the treatment of oxidative stress.
               
Click one of the above tabs to view related content.